City of Bonita Springs: Felts Ave Bio-Reactor

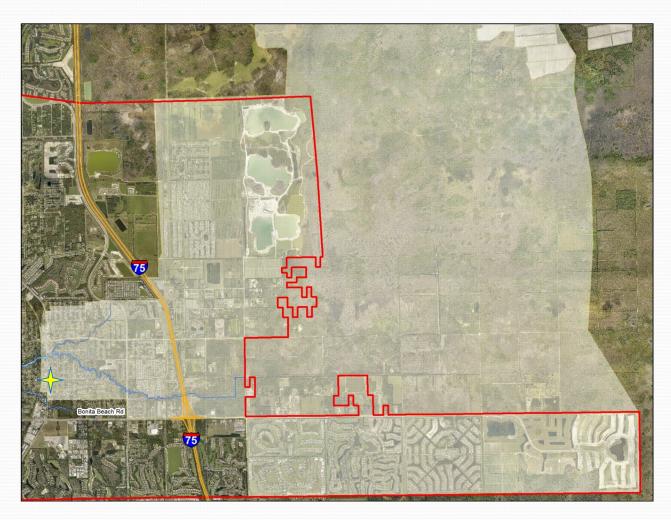
Presented by: Matt Feeney Assistant City Manager

Background: Imperial River Watershed

- Freshwater Basin: 70.2
 Square Miles (44,960
 Acres)
- Major Tributary to Estero Bay
- Current Landuses:
 - 10% Urban
 - 26% Agriculture
 - 4% Mining
 - 49% Wetlands
 - 11% Upland Forest & Rangeland

Background: Regulation BMAP

 Total Maximum Daily Load (TMDL) of .74 mg/l of Nitrogen established for the River

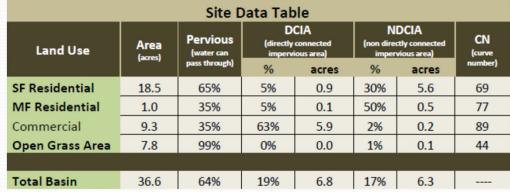

TABLE 31: TN REQUIRED REDUCTIONS FOR THE IMPERIAL RIVER BASIN MS 48

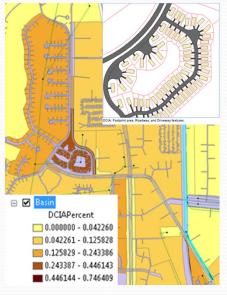
ENTITY	AREA (ACRES)	EXISTING TN (LBS/YR)	ALLOCATION (LBS/YR)	% REDUCTION	REDUCTION REQUIRED
Lee County	26,113	94,469	92,913	1.6%	1,556
City of Bonita Springs	7,154	37,426	27,524	26.5%	9,903
FDOT	96	347	252	27.4%	95
Agriculture	11,597	120,084	71,514	40.4%	48,570
Totals:	44,960	252,326	192,202	23.8%	60,125

Basin Management Action
 Plan Established by the state in November 2012 to achieve reduction of .74 mg/l goal by 2027.

Background: Project Siting

 Projects eligible for consideration in the reduction of the City's nitrogen quota are limited to the Imperial's basin


Mathematical Nutrient Model


 Nutrient Loading Rates are applied based on land use

	Imperial River Basin Loading Rates by Land Use								
Key		Category	Included FLUCCS	MG/L Loading					
	1100	Single-Family Residential	1100s	1.03					
	1200	Medium-Density Residential	1200s	1.29					
	1300	Multi-Family Residential	1300s	1.38					
	1400	Commercial	1400	1.28					
	1550	Industrial	1550	1.24					
	1610	Mining	1610, 1620, 1630, 7400, 7430	0.29					
	1660	Mining - Holding Ponds	1660	0.73					
	1700	Institutional/Transportation/Utilities	1700, 1710, 8140, 8310, 8320	0.53					
	1800	Golf Courses and Parks	1800, 1820, 1850	0.77					
	1900	Rangeland	1900, 1920, 3100, 3200, 3210, 3300	0.52					
	2000	Agriculture	2000s	3.05					
	4000	Upland Forested	4000s	0.17					
	5000	Freshwater - Open Water	5000s	0.73					
	6120	Forested - Freshwater Wetlands	6120-6300	0.54					
	6410	Non-Forested Freshwater Wetlands	6410, 6430, 6440	0.47					
	6420	Saltwater Wetlands	6420, 6510	0					

Mathematical Nutrient Model

- Pervious & Impervious Areas Calculated
- Runoff Pollution Amounts are derived
 - Soil Type
 - Seasonal High Water Table
 - Directly Connected Runoff

Mean Annual Mass Removal Efficiencies (%) for 0.40-inches of Retention for Zone 4

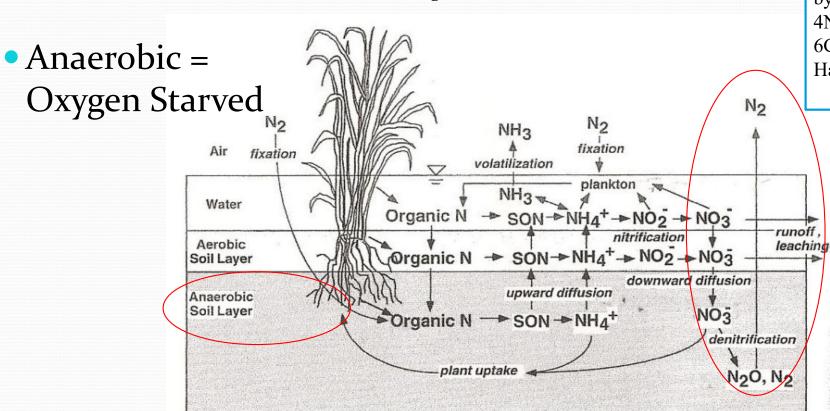
NDCIA									Percer	nt DCIA								
CN	0-15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	89.1	84.4	79.1	74.1	69.3	65.0	61.1	57.6	54.4	51.6	49.0	46.6	44.4	42.5	40.7	39.0	37.5	36.
35	87.6	83.3	78.4	73.5	68.9	84.7	60.9	57.4	54.3	51.4	48.9	46.5	44.4	42.5	40.7	39.0	37.5	36.
40	85.8	81.9	77.4	72.8	68.4	64.3	60.6	57.2	54.1	51.3	48.8	46.4	44.3	424	40.6	39.0	37.5	36.
45	83.5	80.2	76.1	71.8	67.6	63.7	80.1	56.8	53.8	51.1	48.6	46.3	44.2	42.4	40.6	39.0	37.5	36.
50	8.06	78.2	74.6	70.6	66.7	63.0	59.6	56.4	53.5	50.8	48.4	46.2	44.1	42.3	40.5	38.9	37.5	36.
55	77.8	75.8	72.7	69.2	65.6	62.2	58.9	55.9	53.1	50.5	48.2	46.0	44,0	42.2	40.5	38.9	37.4	36
60	74.2	73.0	70.5	67.5	64.3	61.1	58.1	55.2	52.6	50.1	47.8	45.7	43.8	42.0	40.4	38.8	37.4	36
65	70.3	69.8	67.9	65.4	62.6	59.8	57.0	54.4	51.9	49.6	47.4	45.4	43.6	41.9	403	38.8	37.4	36.
70	66.0	66.0	64.8	62.9	60.6	58.2	55.7	53.4	51.1	48.9	46.9	45.0	43.3	41.7	40.1	38.7	37.4	36
75	61.7	61.7	61.2	59.9	58.1	56.1	54.1	52.0	50.0	48.1	46.2	44.5	42.9	41.4	39.9	386	37.3	36
80	57.0	57.0	56.9	56.2	55.0	53.6	51.9	50.3	48.6	46.9	45.3	43.8	42.3	41.0	39.6	38.4	37.2	36
85	52.0	52.0	52.0	51.7	51.1	50.2	49.1	47.9	46.6	45.3	44.0	42.8	41.5	40.4	39.2	38.1	37.1	36.
90	46,8	46.8	46.8	46.8	46.4	46.0	45.3	44.6	43.8	43.0	42.1	41.2	40.3	39.5	38.6	37.7	36.9	36.
95	41.4	41.4	41.4	41.3	41.2	41.0	40.7	40.4	40.1	39.7	39.3	38.9	38.5	38.0	37.5	37.1	36.6	36.
98	38.5	38.4	38.4	38.3	38.2	38.1	37.9	37.8	37.7	37.5	37.4	37.2	37.0	36.9	36.7	36.5	36.3	36.

Current Standard: Dry & Wet Retention

Limitations:

- Land Intensive
- Less Effective with High Water Table
- Single Purpose Use of Real Estate
- Treatment Volume Limited/not Continuous

Bio-Reactor: Emergent Technology


WHY?

- Scalable Technology
- Multiple uses of Land allowed (not just water treatment)
- Benefits from High Water Table
- Allows for Continuous Water Treatment

Bio-Reactor Concept: Mimic Natural Process

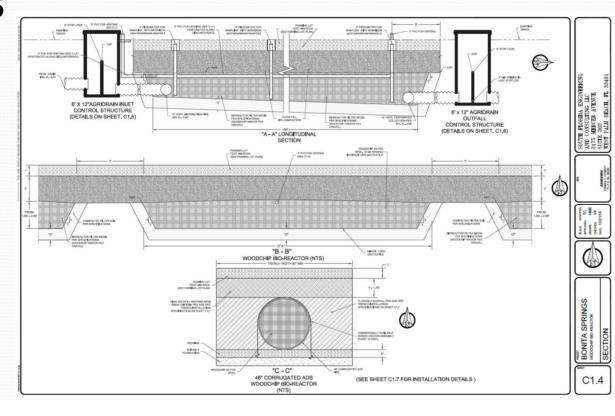
Nitrogen transformations in wetlands

Denitrification is illustrated by the equation: $4NO3 - +6(CH2O) \rightarrow$

4NO3−+6(CH2O) → 6CO2+2N2+6H2O (3)

Hauck, 1984

City of Bonita Springs:


Felts Ave Bio-Reactor Phase I Funding

\$250,000 State Budget
 Appropriation FY 14/15

• \$100,000 Grant form **SFWMD Oct 2016**

• \$450,705 City funds

Total Cost: \$800,705

Phase | Bio-Reactor Design Features

- Four 37FT X 185 FT Bio-Reactor Cells
- 185 LF of 48" ADS Bio-Reactor

Project Components

- ³/₄ inch hardwood woodchips free of bark Bio-Reactor Media
- Pea Gravel
- One Eco Vault Filter Media
- Revised Surface Water Drainage System Piping

Phase I Construction

Component installation

Project Completion

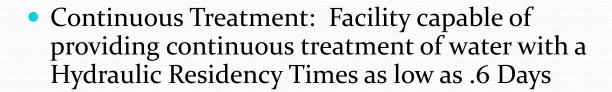
- 101 Additional Parking Spaces
- Multi-Use/Flexible Design

Land Utilization

Simply Put.....

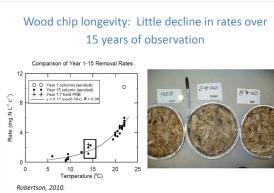
Testing

- 21,000 Gallon Baker Tank Fed Surface Water into 48 Inch Bio-Reactor #1
- Water Quality Monitored of Bio-Reactor #1 Influent and Effluent
- Samples sent to Laboratory for Analysis


Bio-Reactor #1 Nitrate Testing Results

- Nitrate (NO₃) removal efficiency rate ranging from 77% - >98%
- Average Influent contained .253 mg/l NO3
- Hydraulic Residency times varied from 0.5 to 1.09 days

Influe	ent	Efflue	<u>ent</u>	HRT	Removal
Date & Time	NO3 (mg/l)	Date & Time	NO3 (mg/l)	(days)	<u>Efficiency</u>
9/12/19 15:00	0.247	-	_	-	<u>-</u>
9/15/19 9:59	0.255	9/15/19 9:54	0.006	0.61	/>98%
9/15/19 14:18	0.26	9/15/19 14:18	0.006	0.59	>98%
9/16/19 11:19	0.266	9/16/19 10:49	0.006	0.64	>98%
9/16/19 16:00	0.258	9/16/19 16:00	0.006	1.09	>98%
9/17/19 10:22	0.256	9/17/19 10:01	0.006	1.07	>98%
9/17/19 16:04	0.254	9/17/19 16:15	0.006	1.02	>98%
9/18/19 9:50	0.257	9/18/19 10:10	0.028	1.02	89%
9/18/19 16:00	0.233	9/18/19 16:10	0.006	1.02	>98%
9/19/19 9:35	0.247	9/19/19 10:15	0.059	0.5	77%
Average		Average			
Influent		Effluent			
Concentration		Concentration			
(mg/l)	0.253	(mg/l)	0.014		


Testing: Lessons Learned

 Continuous Water Supply = Longer Project Lifespan (Constant Anaerobic State)

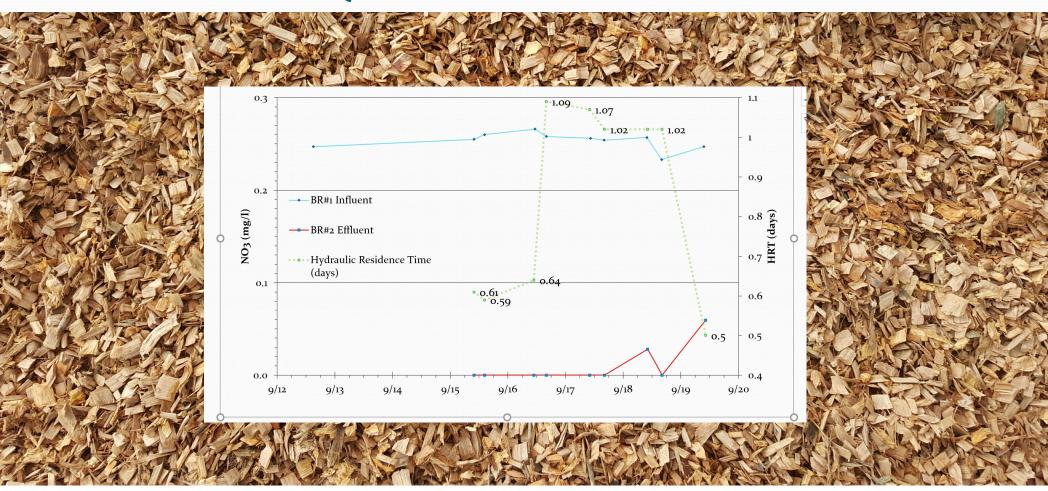
 Felts Avenue Bio-Reactor Site is located within close proximity to a constant water supply, the Imperial River.

Treatment Results are actual in nature, not model
 based

Extrapolated Annual Removal of Nitrogen for Retrofit Phase I Bio-Reactor Chambers #1 through #5

<u>Hydraulic</u>	Total Flow for All Five	Annual Remo	oval Efficency (L	<u>bs) Based on</u>
Residence Time	Existing Bio-Reactors	Nitrogen Rer	<u>moval Rate per</u>	<u>Unit Volume</u>
(Days)	<u>(gpm)</u>	0.25 mg/l	0.5 mg/l	1.0 mg/l
0.5	408	447.7	895.5	1790.9
0.6	340	373.1	746.2	1492.4
0.7	292	319.8	639.6	1279.2
0.8	255	279.8	559.7	1119.3
0.9	227	248.7	547.2	995.0
1	204	223.9	447.7	895.5
1.1	186	203.5	407.0	814.1

Cost Effectiveness of Implementation of Phase II


		<u>Depreciation</u>	Projected Nitrogen	per Lbs of Nitrogen
	Capital Cost	<u>Period</u>	Removal (lbs/yr)	<u>Removal</u>
Phase I & Phase II	\$1,553,705	15	895.5	\$115.67
Phase II Only	\$753,000	15	895.5	\$56.06

\$638/lb. of Nitrogen removed is FDEP project cost average cost **not inclusive** of land acquisition costs.

Recent Accolades:

- City Applied for and Received \$400,000 in FDEP Harmful Algal Bloom Funding to assist in the design and construction of Phase II
- City Partnered with FGCU to Fund a "Water Steward" position in the City duties include to assist in the sampling of Phase II project
- Project Recently Awarded The Florida League of Cities Environmental Stewardship Award

Questions?

